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Identification and Analysis of MIMO Systems
 based on Clustering Algorithm

B. Feil, J. Abonyi, J. Madár, S. Németh, P. Árva
University of Veszprém, Department of Process Engineering, Veszprém, H-8201 P.O. Box 158

ABSTRACT

This paper presents a compact Takagi-Sugeno fuzzy model that can be effectively used to
represent MIMO dynamical systems. For the identification of this model a modified
Gath-Geva fuzzy clustering algorithm has been developed. The case studies demonstrate
that the proposed algorithm can be a useful and effective tool to select the embedding
dimension of a dynamical system. This is a key step toward the analysis and prediction
of nonlinear and chaotic time-series. The clustering is applied in the reconstruction
space defined by the lagged output variables. The main advantage of the proposed
solution is that three tasks are simultaneously solved during clustering: selection of the
embedding dimension, estimation of the intrinsic (local) dimension, and identification of
a model that can be used for prediction. The results were excellent in the case of the
analyzed, three and four dimensional systems. Programs and data sets will be available
via Internet on our web page http://www.fmt.vein.hu/softcomp/timeseries.
(Keywords: MIMO model, clustering algorithm, state-space reconstruction, chaotic time series)

ÖSSZEFOGLALÁS

MIMO modellek identifikációja és analízise csoportosítási algoritmus segítségével
Feil B., Abonyi J., Madár J., Németh S., Árva P.

Veszprémi Egyetem, Folyamatmérnöki Tanszék, Veszprém, 8201 Pf. 158.

Nemlineáris több bemenetű-több kimenetű (MIMO) rendszerek modell-identifikációja fontos és
kihívásokkal teli probléma. Fuzzy modellek hatékonyan alkalmazhatók komplex nemlineáris
dinamikus rendszerek esetén, de többnyire egy bemenetű-egy kimenetű modellekre találunk
példákat az irodalomban. Ez a cikk olyan kompakt Takagi-Sugeno fuzzy modell identifikációját
mutatja be, amely dinamikus MIMO rendszereket is képes reprezentálni. Ennek a modellnek az
identifikációjához fuzzy csoportosítási algoritmust fejlesztettünk ki. Az esettanulmány mutatja,
hogy a javasolt algoritmus hasznos és hatékony eszköz dinamikus rendszerek dimenziójának
meghatározásában is. Ez a lépés kulcsfontosságú nemlineáris és kaotikus idősorok analízise és
predikciója esetén is. A csoportosítást a kimeneti változók időkésleltetett tagjai által definiált ún.
rekonstrukciós térben alkalmaztuk. A javasolt módszer nagy előnye, hogy három feladatot lehet
megoldani a csoportosítás alkalmazásával szimultán módon: a helyes és a lokális dimenzió
meghatározását, továbbá a predikcióhoz is használható modell identifikációját. A lokális
dimenzió a fuzzy kovariancia mátrixok sajátértékeinek analíziséből becsülhető, míg a helyes
állapottér-dimenzió a csoportok által definiált lokális modellek predikciós teljesítménye alapján
állapítható meg.
(Kulcsszavak: MIMO modell, csoportosítási algoritmus, állapottér-rekonstrukció,
kaotikus idősorok)
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INTRODUCTION

Most of the developments in the field of nonlinear dynamics over the past century have
assumed that one had a complete description of the dynamical system under consideration.
In principle the practical application of these results thus requires the simultaneous
measurement of all the state variables. Unfortunately, in many real problems one has only
the sketchiest information about what these variables are, and one certainly has no hope of
observing them all. Instead, one typically has a time series of one or more observables of
the system, whose relationship to the state variables is at best uncertain. Fortunately, a
remarkable result discovered by Takens some twenty years ago shows in Takens (1981)
that typically one can reconstruct the dynamics of an unknown deterministic finite-
dimensional system from a scalar time series generated by that system.

Figure 1

Overview of delay embedding for deterministic systems

1. ábra: Determinisztikus rendszerek időkésleltetett beágyazásának áttekintése

Megfigyelés(1), Időkésleltetett rekonstrukció(2)

We denote the state space of our dynamical system as Μ , which is assumed to be a
finite-dimensional compact manifold. We assume that the state of the system at time k ,
denoted Mx ∈k  evolves according to )(1 kk xfx =+ . The system is observed using a smooth
measurement function Ry →M:  giving a scalar time series )( kky xg= . The aim of the so-
called method of delays is to reconstruct the state space M  and the dynamics f  from
the time series ky . Because M  is high-dimensional and each component of ky  is only
one-dimensional, it is clear that to obtain a suitable state space we need to somehow
group different elements of the time series. The most natural (but not the only) way of
doing this is to take successive ky  to create a vector:

T
dkkkk e

yyy ],...,,[ )1( −−−= ττy (1)

where τ  correspond to the interval on the time series that creates the reconstructed state
space (lag time), usually chosen to be the first zero of the autocorrelation function or the
first minimum of mutual information. The mutual information between two
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measurements is used to measure the generally nonlinear dependence of two variables.
The mutual information for two measurements ny  and τ+ny  from the same time series is
expressed by
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where the individual probability densities, )( nyP  and )( τ+nyP , are equal to the frequency
with which the data points ny  and τ+ny  appear in the time series, respectively. The
frequency can be obtained directly through tracing the data points in the entire time
series. The joint probability density, ),( τ+nn yyP , is obtained by counting the number of
times the values of the ny  and τ+ny  pair are observed in the series. Average mutual
information is computed for all data points in the following manner:
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When )()(),( ττ ++ = nnnn yPyPyyP  such that )(τI  approaches zero, the data points ny  and τ+ny
are completely independent. In practice the first minimum of the average mutual
information function is chosen as the lag time Adeli (2003).

The number of components ed  that we use is usually referred to as the embedding
dimension. Although the data is embedded in a ed  dimensional space, this does not
necessarily mean that it fills that space. Sometimes the system defines a nonlinear hyper-
surface in which the state variables reside, i.e the tangent space. The dimension of this
hyper-surface is often referred as intrinsic, topological or local dimension, ld . Takens
proved in Takens (1981), that ideal systems (an infinite number of points without noise)
converge to the real dimension if 12 +≥ le dd . According to Sauer et. al. 1+≥ le dd  in
practical cases can be enough to reconstruct the original state space.

CLUSTERING IN THE RECONSTRUCTED SPACE

The bottleneck of the data-driven identification of Takagi-Sugeno (TS) models is the
identification of the antecedent part (membership functions) of TS models that requires
nonlinear optimization. Hence, for this purpose heuristic approaches, like fuzzy
clustering methods, are often applied. The aim of this section is to propose a new
clustering-based technique for the identification of the fuzzy model presented above.

Problem Formulation
The objective of clustering is to partition the identification data ],...,[ 1

T
N

T yyY =  into c  clusters.
The fuzzy partition is represented by the NckiU ×= ][ ,µ  matrix, where the ki ,µ  element of the
matrix represents the degree of membership, how the ky  observation is in the cluster

ci ,...,1= . Different cluster shapes can be obtained with different kinds of clustering
algorithm based on different prototype, e.g., point or linear varieties (FCV) or with different
distance measure. Mostly, the Gustafson-Kessel clustering algorithm is applied for the
identification of TS models Gustafson (1979). A drawback of this algorithm is that only
clusters with equal volumes can be found and the resultant clusters cannot be directly used to
form membership functions. The Gath and Geva clustering (GG) algorithm does not suffer
from these problems Gath (1989). Gath and Geva interpret the data as normally distributed
random variables and based on this assumption they worked out an algorithm that is able to
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determine the parameters of the clusters, hence the expected value (center) iv , covariance
matrix iF  and a priori probability )( ip η  of the ith cluster, ci ,...,1=  where c  is the number of
clusters. In Abonyi (2002) and Kim (1998) it has been shown how antecedent fuzzy sets
defined on linearly transformed input variables can be derived form clusters obtained by the
GG algorithm. This may, however, complicate the interpretation of the rules.

To from an easily interpretable model that does not use the transformed input
variables, a new clustering algorithm has been proposed based on the Expectation
Maximization (EM) identification of Gaussian mixture models Abonyi (2002). This
approach can be extended to the supervised clustering based identification of fuzzy
classifiers. The aim of this section is to show how this EM based identification technique
can be extended to the identification of MIMO fuzzy models.

Clustering Algorithm
The clustering is based on the minimization of the sum of weighted squared distances
between the samples, ),( 1 kk yy +  and the cluster prototypes, iη .
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The basic idea of the proposed algorithm is to define the cluster prototype which
contains three terms and inversely proportional to the probability of the data:

||)2(

)()()(
2
1exp

)(
2
1exp),|()|()(1

2/

1
1

1

1
2
,

2
,,

12
,

i
de

ikiki
T

ikik

d

j ji

jikj
iikkiki

ki

e vy
wppp

D

P

byAyPbyAy

yyy

π

σ
ηηη







 −−−−−

⋅








 −
−==

+
−

+

=
+ ∏

(5)

The )|( ikp ηy  distribution is parameterized as Gaussian distributions Gershenfeld (1999), and
defines the domain of influence of a cluster (so it is based on the iv  geometrical distance
between the cluster center and the ky  vector). Since the simplicity and interpretability of the
model is important, the cluster weighted covariance matrix is reduced to its diagonal elements,

2
, jiσ , which resembles the simplified axis-parallel version of the Gath-Geva clustering algorithm

Hoppner (1999). The third distance term is based on the performance of the local linear models
where iP  is the weighted covariance matrix of the modeling error of the i th local model.

The ),|( 1 kkii,k p yy += ηµ  weight denotes the membership of the sample that is
generated by the i th cluster

),(
)()|,(),|(

1

1
1

kk

iikk
kki p

ppp
yy

yyyy
+

+
+ =

ηηη (6)

To get a fuzzy partitioning space, the membership values have to satisfy the following
conditions:
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The minimization of the Equation (4) function represents a non-linear optimization
problem that is subject to constraints defined by (7) and can be solved by using a variety
of available methods. The most popular method, however, is the alternating optimization
(AO), which is formulated as follows:
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Initialization Given a set of data Y specify the number of clusters, c, choose a weighting
exponent (usually m=2) and a termination tolerance ε>0. Initialize the partition matrix
(randomly), Ncki ×= ][ ,µU .
Repeat for ,...2,1=l

Step 1 Calculate the parameters of the clusters
– Centers of the membership functions:
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– Standard deviation of the Gaussian membership function:
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– Parameters of the local models.
The modeling framework that is based on combining a number of local models, where
each local model has a predefined operating region in which the local model is valid is
called operating regime based model [Murray, (1997)]. This model is formulated as:
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where the )( ki yβ  function describes the operating regime of the ci ,...,1= -th local linear
models, the local models are defined by the ][ iii bAθ =  parameter set and using this
notation ),(1 iki

i
k f θyy =+  is the output of the i th local model. The output of this model is

linear in the elements of the iA  consequent matrices and the ib  offset vectors. Therefore,
these parameters can be estimated from the data by linear least-squares techniques. The
N  identification data pairs and the truth values of the fuzzy rules are arranged in the
following regressor matrix Y  and regressand matrix )1(+Y  where the subscript denotes
that these matrices contain the same terms, ky , just shifted with one sample time.
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where the elements of the iβ  matrix are equal to the memberships that the ky  sample is
generated by the i th cluster ),|()( 1

)1(
, kki
l
kiki p yyy +
− == ηµβ . By using this notation, the

weighted least squares solution of iθ  is:
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– Covariance of the modeling errors of the local models.
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– A priori probability of the cluster
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– Weight (impact) of the rules:
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Step 2 Compute the distance measure 2
,kiD  by (5).

Step 3 Update the partition matrix

( ) Nkci
DDc

j
m

kjki

l
ki ≤≤≤≤=
∑ =

−
1,1,1

1
)1(2

,,

)(
,µ . (18)

until ε<− − |||| )1()( ll UU .
The remainder of this section is concerned with the theoretical convergence properties of
the proposed algorithm. Since, this algorithm is a member of the family of algorithms
discussed in Hathaway (1993), the following discussion is based on the results of
Hathaway and Bezdek. Using Lagrange multiplier theory, it is easily shown that for

0, ≥kiD , (18) defines )1( +lU  to be a global minimizer of the restricted cost function (4).
From this it follows that the proposed iterative algorithm is a special case of grouped
coordinate minimization, and the general convergence theory can be applied for
reasonable choices of kiD ,  to show that any limit point of an iteration sequence will be a
minimizer, or at worst a saddle point of the cost function J . The local convergence
result in Bezdek (1987) states that if the distance measures kiD ,  are sufficiently smooth
and a standard convexity holds at a minimizer ),( ** ηU  of J , then any iteration sequence
started with )0(U  sufficiently close to *U  will converge to ),( ** ηU . Furthermore, the rate
of convergence of the sequence will be w-linear. This means that there is a norm ||*||
and constants 10 << γ  and 00 >l , such that for all 0ll ≥ , the sequence of errors

||}),(),({||}{ ** ηη UU −= llle  satisfies the inequality ll ee γ<+1 .

ESTIMATION OF THE LOCAL DIMENSION

The collection of c  clusters approximates the tangent space. Hence, the clusters can be
approximately regarded as local linear subspaces described by the cluster ellipsoids as
shown in Figure 2. The smallest eigenvalues edi,λ  of the cluster covariance matrices iF
that are typically in orders of magnitude smaller than the remaining eigenvalues Babuska
(1998), Abonyi (2002).

In Cadzow (1993) it has been shown that the widely applied minimum description
length criterion (MDL) model order selection criterion can be expressed based on the
smallest eigenvalues of the data covariance matrix. Applying the approximation that
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1/1 ≈NN  for large N , one can see that the MDL criterion asymptotically provides the
same information as the minimum eigenvalue of the covariance matrix. The utilized
fuzzy clustering obtains local linear approximation of the nonlinear system, MDL
criterion can be modified for cluster-based model-order estimation by weighting the
values of this simplified cost functions calculated from the cluster covariance matrices
with the a priori probability of the clusters:
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ii

d pJ e

1
min,)( λη (19)

Figure 2

Eigenvalues of clusters obtained by GG clustering

2. ábra: A csoportok sajátértékei GG csoportosításban

ESTIMATION OF THE EMBEDDING DIMENSION

In case of the proper number of embedding dimensions, the behavior of the time-series
in the reconstruction space can be formulated by a smooth nonlinear function

)(1 krk yfy =+
(20)

While it may not be possible to find a model that is universally applicable to describe the
unknown (.)rf  MIMO system, it would certainly be worthwhile to build local linear
models for specific operating points of the process and one of these methods is proposed in
this paper. The main advantage of this framework is its transparency, because the operating
regimes of the local models can be represented by fuzzy sets Babuska (1997). This
representation is appealing, since many systems change behavior smoothly as a function of
the operating point, and the soft transition between the regimes introduced by the fuzzy set
representation captures this feature in an elegant fashion. The proposed fuzzy model can be
seen as a multivariable linear parameter varying system model (LPV). As this method
forces the local linear models to fit the data locally, it does not give an optimal fuzzy model
in terms of a minimal global prediction error, but it ensures that the fuzzy model is
interpretable as a Linear Parameter Varying (LPV) system Abonyi (2000).

It has been shown that the clustering algorithm defines a function mapping
)(1 krk yfy =+ . If this mapping is similar to the original dynamical system f , it is required

that 11 ++ = pk yy  whenever pk yy = . In terms of the time series this condition amounts to
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depden ++ = yy  whenever depdekpk ++ == yyyy ,...,  and is thus equivalent to the time series being
perfectly predictable. In this context one might also ask about the regularity of rf , i.e. is
it continuous, smooth etc? Hence, the embedding dimension is determined by increasing
the number of lagged outputs, ed , and performing the clustering and the analysis of the
eigenvalues of the clusters and the one-step ahead prediction model of error.

APPLICATION EXAMPLES AND DISCUSSION

The proposed approach has been tested in several higher dimensional chaotic time-series
and gave very convincing results. In every case study 15000 samples were used from
variable x  to reconstruct the state space, the number of the clusters 20=c , the
termination tolerance 410−=ε  and the weighting exponent 2=m . All the programs were
written in MATLAB.

The first system is Rössler attractor. The following three differential equations
define this system:

)( zyx +−=& (21)

ayxy +=& (22)

)( cxzbz −+=& (23)

The initial conditions for solution of the differential equations are 0)0( =x , 0)0( =y  and
0)0( =z  and the used parameter values are 38.0=a , 3.0=b  and 5.4=c , following Adeli

(2003). Under these conditions the trajectories can be given as depicted in Figure 3. The
variable x  can be shown in time in Figure 4.

Figure 3

Trajectories in the original state space in case of the Rössler system
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3. ábra: Trajektóriák az eredeti állapottérben Rössler rendszerben



Acta Agr. Kapos. Vol 8 No 3

199

Figure 4

The variable x in time in case of the Rössler system
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4. ábra: Az x változó alakulása az időben Rössler rendszerben

The lag time was τ20  in this case where τ  is the sampling time 05.0=τ . The lag time
was chosen as the first minimum of the average mutual information function.

As Figure 5 shows, the proposed indices (minimum eigenvalues and prediction
errors) form a plot that correctly reflects the dimensionality of the original three
dimensional system. Furthermore, the identified model gave excellent prediction
performance (see Figure 6), the original and the predicted data take the same subspace.
Because the model order is determined by finding the number of lagged outputs ed
indices form a table in this dimension. The predicted data depicted in Figure 6 was given
by a free run simulation of 5000 data. It can be seen that the trajectories are similar and
the solution is good.

The second example in this paper is a four dimensional system published by Yao
(2002). The system equations are

yxyx ++−= )( 2α&& (24)

xyxy ++−= )( 2β&& (25)

When 1.0=α , 101.0=β  and initial conditions 1.0)0( =x , 1.0)0( =x& , 1.0)0( −=y ,
1.0)0( −=y& , the 4 dimensional system is highly chaotic Yao (2002). The sampling rate

was 0.05, and the lag time is τ50  by the average mutual information function.
As Figure 7 shows the estimated embedding dimension is four, and the local

dimension is three based on the weighted smallest eigenvalues (19). In Figure 8 the first
three dimensions of the original (solid line) and the predicted (dashed line) four
dimensional data can be seen and the prediction performance is excellent, although the
fourth dimension cannot be plotted.
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Figure 5

Estimation of the de and dl dimensions of the reconstruction space
in case of a three dimensional chaotic system
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5. ábra: A de és dl dimenziók becslése a rekonstrukciós tér alapján háromdimenziós
kaotikus rendszerben

Súlyozott legkisebb sajátértékek(1)

Figure 6

Prediction performance in case of a three dimensional chaotic system
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6. ábra: Predikciós teljesítmény háromdimenziós kaotikus rendszerben
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Figure 7

Estimation of the de and dl dimensions of the reconstruction space
in case of a four dimensional chaotic system
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7. ábra: A de és dl dimenziók becslése a rekonstrukciós tér alapján négydimenziós
kaotikus rendszerben

Súlyozott legkisebb sajátértékek(1)

Figure 8

Prediction performance in case of a four dimensional chaotic system
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8. ábra: Predikciós teljesítmény négydimenziós kaotikus rendszerben
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